A Simplified Method to Measure the Diffusion
Tensor from Seven MR Images

Peter J. Basser, Carlo Pierpaoli

Analytical expressions of the diffusion tensor of water, D, and
of scalar invariants derived from it, are given in terms of the
intensities of seven diffusion-weighted images (DWis). These
formulas simplify the post-processing steps required in diffu-
sion tensor imaging, including estimating P in each voxel
(from the set of b-matrices and their corresponding DWiIs),
and then computing its eigenvalues, eigenvectors, and scalar
invariants. In a study conducted using artifact-free DWIs with
high diffusion weighting (b .., -~ 900 s/mm?), maps of Trace(D)
and the Relative and Lattice Anisotropy indices calculated
analytically and by multivariate linear regression showed ex-
cellent agreement in brain parenchyma of a healthy living cat.
However, the quality of the analytically computed maps de-
graded markedly as diffusion weighting was reduced. Al-
though diffusion tensor MR! with seven DWIs may be useful
for clinical applications where rapid scanning and data pro-
cessing are required, it does not provide estimates of the uncer-
tainty of the measured imaging parameters, rendering it suscep-
tible to noise and systematic artifacts. Therefore, care should be
taken when using this technique in radiological applications.
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INTRODUCTION

The Trace of the translational diffusion tensor, Trace(D),
is proportional to the orientationally averaged water dif-
fusivity (1) and is independent of the tissue’s local fiber-
tract direction (2). Its ability to demarcate ischemic re-
gions in human stroke studies (3) as compared with
apparent diffusion coefficient (ADC) imaging (4) should
lead to its wide-spread use as an MR imaging parameter
(2). However, Trace(D} is only one member of a family of
useful “stains” that diffusion temsor MRI (2) provides to
measure different intrinsic features or characteristics of
water diffusion in tissues. These include the three prin-
cipal diffusivities (eigenvalues), the three principal di-
rections (eigenvectors), the three scalar invariants, and
several indices of diffusion anisotropy, structural simi-
larity, and tissue organization (2, 5, 6). Maps of the de-
gree of diffusion anisotropy reveal organizational and
architectural features of the normal human brain (7), as
well as Wallerian degeneration of fibers in chronic stroke
(8). The principal directions of D reveal additional orga-
nizational and architectural features in the brain (9-11),
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and in the heart (12, 13) that presently can not be elucidated
using other imaging methods. In general, this new family of
MRI parameters is expected to be useful in studying nor-
mal, pathological, developing, and aging tissues.

In the clinical environment, ensuring patient welfare
and limiting the cost per scan behooves one to minimize
the time required to obtain these imaging parameters.
This entails both reducing the acquisition time of diffu-
sion-weighted images (DWIs) and simplifying the subse-
quent data processing, To date, several simplified imaging
schemes have been proposed to determine different quan-
tities obtainable from the diffusion tensor using fewer than
seven DWIs. For example, isotropically or Trace-weighted
imaging schemes (14-16) produce images whose intensity
is proportional to Trace(D) usiog as few as two DWIs. The
tetrahedral gradient sampling scheme (17, 18) produces
maps of Trace(D) and a diffusion anisotropy measure (18]
using only five DWIs (but only by assuming that diffusion is
cylindrically symmetric). Aunisotropically weighted MRI
schemes (19, 20} have been shown to require seven DWIs to
produce an MRI whose intensity is an admissible measure
of diffusion anisotropy in media where no a priori informa-
tion on water diffusivity is available. Because seven DWIs is
also the same number required to calculate the entire dif-
fusion tensor analytically (21), it is prudent to investigate this
special case and to exarnine its strengths and weaknesses.

EXPERIMENTAL DESIGN

In diffusion tensor MRI, we estimate the effective diffu-
sion tensor, D, and the T,-weighted echo amplitude,
A(b = g}, in each voxel from the MR echo attenuation and
the applied gradient sequences using (21):

3

b ) = 3 S byDy= - TracebD) [1]

g=1 t=1

Above, b is the 3 X 3 symmetric, positive semi-definite
b-matrix; D is the corresponding 3 X 3 symmetric positive
definite diffusion tensor; b D is their matrix product; A(b) is
the echo amplitude measured using a pulse gradient se-
quence whose b-matrix is b; and A(b = 0) is the echo
amplitude without diffusion attenuation. The b-matrix in
Eq. [1] is calculated from the pulse gradient sequence as
described elsewhere (22--24). In the special case in which
severnl DWIs are acquired with gradients applied in at least
six noncollinear directions®, Eq. [1] represents a system of
seven linear equations and seven unknowns (six indepen-
dent elements of D and A(b = 0)) whose values can be
determined analytically (21).

" with no three diffusion gradient vectors lying in the same plane
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If we do not know the distribution of fiber orientations a
priori, it is prudent to apply the diffusion gradient direc-
tions uniformly so as not to bias one’s observations of
molecular displacements along any one particular direction
at the expense of others (7). Here, the first DWI is acquired
with negligible diffusion weighting, whereas the remaining
six DWIs are acquired with applied diffusion gradient vec-
tors of equal magnitude and with a uniform orientational
distribution. Specifically, we use a pattern of diffusion gra-
dient directions such that the gradient vectors (and their
reflections through the origin) pass through the vertices of a
regular 14-sided polygon shown in Fig. 1 (7, 25). The gra-
dient vector G' contains the X, y, and z components applied
during the i DWL G' = G, r' is the product of the peak
diffusion gradient magnitude, G, and a unit (column) vec-
tor, r', in the direction of the i applied gradient vector:

G’ = {0, 0, 0}"

(2]

To simplify the b-matrix, it is desirable to construct DWI
sequences whose imaging gradients produce negligible dif-

FIG. 1. A 14-sided regular polyhedron used to represent the dif-
fusion gradient directions applied in this study. The gradient vec-
tors and their reflections through the origin pass through the
vertices of this polyhedron. The six-gradient independent gradient
vectors consist of three pairs of orthogonal vectors.
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fusion attenuation (22), In this study, all such “cross terms”
are almost entirely eliminated by refocusing imaging gradi-
ents just after they are applied, as has been described pre-
viously (26). Then, the b-matrix, b, for the corresponding
i® DWI, simplifies to the form reported previously (21}):

bi - az Gi GiT - azGUz ri riT [3]

where « is a constant that depends only on the proton gyro-
magnetic ratio, the gradient pulse sequence shape and dura-
tion, and other timing parameters (21). With Eq. {3], we can
simplify the relationship between the i™ log-ratic image, IM,,
and the corresponding diffusion gradient sequence from

A(b)

A(D" = 0)

\

) = - 2 Z bim Dy [4]

‘ s=1 t=1

to

A(G) ) o
IM; = ln| ———] = —a? Gy? r'T D!
A(G® = 0)

. s [5]
”QZGOZE 2 ris I{ Dy

§=1 t=1

it

Then, IM; has a simple interpretation: it is proportional
to the apparent diffusion coefficient (ADC) measured
along the direction r'.

By substituting the seven gradient vectors given in Eq.
[2] into Eq. [5], we obtain six independent equations for
the IM; that are linear functions of the six independent
elements of the diffusion tensor: D, D, D,, Dy, Dy,
and D,,. This system of linear equations is selved simul-
taneously, yielding analytical expressions for each of the

six diffusion tensor elements:

D= D=
— M, + IM
Dy = et
: ab
~IM, - IM, - My~ IM, + IMy + IM, [
4b A
B IMy - IMy +IM, + M, — M — IM,
XX 4b
IM, + IM, — IM, — IM, ~ IM; — IM;
= 4b

Above, we have used the definition b = (¥4)a?G,>. Effec-
tively, from the measurement of ADCs applied in six
directions, we are able to determine each of the six dif-
fusion tensor elements. However, the six independent
elements of the diffusion tensor are now expressed ex-
plicitly in terms of the six IMs.

Using Eq. [6], we can obtain an analytical expression
for'any function of D in terms of the log-ratio images. For
example, analytical expressions can be obtained for the
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three principal diffusivities of D, Ay, A,, and A;, by solv-
ing the characteristic equation of D. Their formulas can
be obtained in ref. 27. The eigenvectors of ) generally are
solved analytically or numerically once the eigenvalues
are determined (e.g., see refs. 27 and 28). The three scalar
invariants of D, J,, J,, and J,, can be calculated directly
from D using the formulas:

J, = Trace(D)
Ja = %(Trace(_[),)2 — Trace(D?) (71

Ja = Determinant(D)

EXPERIMENTAL METHODS

Diffusion-weighted MRIs (DWIs) of live healthy anesthe-
tized cat brains were obtained using a 2-T CSI animal
imaging system (35 cm bore) and a birdcage gquadrature
coil (13 cm id). One DWI with G° = {0, 0, 0.3} G/cm was
acquired to approximate A(G® = 0), the DWI with no
diffusion weighting. Subsequently, diffusion gradients
were applied in six oblique directions according to the
scheme given in Eq. [2] above. Four different levels of
diffusion weighting were used. These four sets of six
DWIs were acquired with G, = 1.5 G/cm, 2.13 G/cm, 2.61
G/cm, and 3.0 G/cm. A total of 25 (128 X 128) axial,
four-slice,” interleaved DW navigator corrected echo-
planar images (EPI) (29, 30), were acquired in 40 min.
Using only seven DWIs reduces the acquisition time to
about 11 min. Additional imaging parameters were: TE =
75.62 ms, A = 38.85ms, 8 = 14 ms, TR = 3 5, na = 2,
FOV = 80 mm, st = 2.5 mm (slice thickness), number of
interleaves = 16. The diffusion weighting of the four sets
of DWIs was given by Trace(b) = 228.82,461.402, 692.79,
and 915.3 s/mm?.

We then used Eq. [6] to calculate D in each voxel for
each of the four sets of six DWIs and the single image,
A(G" = 0}. For comparison, we also used the entire set of
25 DWIs and their calculated b-mnatrices, to determine D
and A(b = 0) in each voxel from Eq. [4] using multivar-
iate linear regression (2). The performance of the analyt-
ically derived and statistically estimated diffusion tensor
maps were then compared, as described below.

RESULTS

The first scalar invariant, Trace(D)}, can be expressed as
the sum of the logarithin of the attenuation of six DWIs:

Trace(D) = D,, + D,, + D,,

H

1
= = (M MG+ IV o+ IM, + M + M)
Above, D, D,, and D,, are the three diagonal elements

of the diffusion tensor, and (D) is their average—the
mean diffusivity. Figures 2a to 2d show Trace(D) calcu-
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lated from Eq. [8] using A{(G" = 0) and four sets of six
DWIs with increasing amounts of diffusion weighting in
each set. Figure 2e shows Trace(D)), where D is estimated
from the pooled set of 25 DWIs by using multivariate
linear regression of Eq. [1] (21, 23). Figure 2f shows the
T,-weighted image, Alb = 0J, also estimated from the
entire set of 25 DWIs using Eq. [1].

One measure of diffusion anisotropy derivable from D is the

relative anisotropy (RA) index, defined praviously as (5):

R — V3 \Trace(D — D)D) (o]
1 Trace(D)

where [ is the identity matrix. RA is the ratio of the
magnitudes of the anisotropic and isotropic parts of the
diffusion tensor, respectively. Figures 3a to 3d show RA
calculated from A(G = @) and from each of the four sets
of six DWIs with increasing diffusion sensitization,
whereas Fig. 3e shows RA calculated from D that is
estimated from the pooled data set using all 25 DWIs.
Figure 3f again shows A(h = Q) estimated from the pooled
data set, using all 25 DWIs for comparison. It should be
noted that the expression for RA is independent of the
value of b.

A more noise-immune and less-biased measure of dif-
fusion anisotropy than RA is the lattice anisotropy index
(6}, whose application to human brain imaging has re-
cently been demonstrated (7). Figures 4a to 4d show the
lattice index calculated from A(G° = 0) and from each of
the four sets of six DWIs with increasing diffusion sen-
sitization, whereas Fig. 4e shows the lattice anisotropy
index calculated from D that is estimated from the pooled
data set using all 25 DWIs. Figure 4f again shows
A(b = 0) estimated from the pooled data set.

DISCUSSION

Although the formulas given in Eq. [6] apply to the log-
ratio images (JMs) obtained using the particular gradient
pattern given in Eq. [2], in principle, any set of seven
DWIs will yield an exact expression for D. The only
requirement is that the six gradient vectors not all lie in
the same plane and that no two gradient vectors are
collinear®. Although other gradient patterns may provide
higher SNR per unit time or per image, the gradient
scheme used here achieves a high SNR per image while
sampling gradient directions uniformly (7).

Recall that Trace(D) = J, is proportional to the diffu-
sivity averaged uniformly over all directions (1). Exam-
ining Eq. [8] reveals that when the gradient directions are
sampled uniformly (as in Eq. [2]), we produce an isotro-
pically or “Trace”-weighted MRI simply by summing the
six IMs. This is because each IM is proportional to the
ADC in the direction along which the diffusion gradients
are applied. Because the six directions given in Eq. (2] are
spherically or isotropically distributed, averaging the six
IMs represents a discrete orientational average of the six
ADCs. A similar result was shown recently when diffu-
sion-gradient directions were arranged with tetrahedral

2 These conditions will guarantee that Eq. [5] results in a full-rank matrix that
is invertible.

Material may be protected by copyright law (Title 17, U.S. Code)



Diffusion Tensor Measurement Methods

a

931

FIG. 2. Trace(D) in healthy cat brain. The first four:images are calculated using only seven DWIs, using Eq. [8], with the gradient pattern
given in Eq. [6]. Images (a) to (d) are acquired with different levels of diffusion weighting, i.e., Trace(b). = (a) 228.82 s/mm?; (b) 461.402
s/mm?; (0) 692.79 s/mm?; and (d) 915.3 s/mm?. Juxtaposed are the images of (e) Trace(D) and (f) Alb = Q), which were both estimated

statistically from the entire data set of 25 DWIs, using Eq. {1].

symmetry (18, 31) and in general is predicted to hold for
all schemes in which gradient directions are isotropically
oriented (uniformly distributed), and in which diffusion
gradient amplitudes are also uniform. Interestingly, the
formulas for all three scalar invariants, J,, ],, and J, are
independent of the order in which the six (nonzero)
gradients are applied.

A strength of performing diffusion tensor MRI using
seven IDWIs is that by providing exact solutions for all the
diffusion tensor elements (as well as for any quantities
derived from them), one reduces the complexity of post-
processing the DWIs. Specifically, these formulas obviate
the steps of calculating the b-matrix from each DWI se-
quence and estimating the diffusion tensor from a set of
these DWIs. These steps are all subsumed in the func-
tional relationships between the logarithms of seven
DWIs and D (see Eq. [6]). Another advantage is that total
scan time required to perform diffusion tensor MRI is
reduced by minimizing the number of acquired DWIs.

Surprisingly, one can obtain comparable image quality
when using only seven DWIs, as one obtains using a
much larger number of DWIs if care is taken in experi-
mental design and in its execution (as described below).
For example, good agreement is found between all Figs.
marked “d” and “e”, even though the former were ob-

tained using only seven DWIs and the latter were ob-
tained using 25 DWIs.

One of the most promising uses of diffusion tensor MRI
with seven DWIs is in analyzing and planning DT-MRI
experiments with more than seven DWIs (2). The first
seven DWIs can be used to furnish maps of D, A(b = 0),
Trace(D) (or (D)), diffusion anisotropy indices, principal
diffusivities, and principal axes. These initial estimates
can then be updated and refined after the acquisition of
each subsequent DWI. Second, the exact solutions for D
and of A(b = 0) can be used in “boot-strap” procedures
(27) to estimate the distributions of D, A(b = 0), and
quantities derived from them, from a set of more than
seven DWIs, Finally, in an experiment in which D is
expected to change rapidly with time, such as during
acute ischemia, it may be advantageous to continuously
acquire repetitive sets of seven DWIs. For the highest
temporal resolution, D and other quantities derived from
it can be calculated at each time point by using only
seven contiguous DWIs. A similar approach was used to
follow the kinetic behavior of Trace(D) and the principal
diffusivities during hyperacute ischemia (32).

However, several assumptions must be satisfied to use
this simplified imaging method with confidence. First, to
obtain such simple algebraic expressions for D (and for its
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FIG. 3. The relative anisotropy (RA) index map in healthy cat brain. The first four RA images are calculated from seven DWis, using Eq.
[9] with the gradient pattern given in Eq. [2]. Images (a) to (d) are acquired with different levels of diffusion weighting, i.e., Trace(b) = (a)
228.82 s/mm?; (b) 461.402 s/mm?; (c) 692.79 s/mm?; and (d) 915.3 &/mm?. Juxtaposed are the images of (e) RA and (f) Alb = 0), which
were both estimated statistically from the entire data set of 25 DWiIs, using Eq. [1].

invariants), we neglect the contributions of the imaging
gradients on the signal attenuation. This is justified in our
case because the DWI sequences were designed so that all
cross-terms (22, 23, 26, 33) would be negligibly small. We
calculated the b-matrix for each echo-planar DWI numeri-
cally and verified that imaging gradients contributed less
than 1% to the total signal attenuation. Even if imaging
gradients were significant, they still could be accounted for,
and exact expressions for D) and its invariants could be
found, albeit, these expressions would be more compli-
cated than the ones presented here. Second, we assume that
when we acquire the A(G® = 0) image, there is no diffusion
attenuation. In practice, the A(G" = 0} sequence generally
contains small crusher gradients that introduce some diffu-
sion attenuation, but in our case, their effect was negligibly
small, because their maximum contribution to Trace(b) was
4.57 s/mm?®. Third, this method assumes that the DWIs are
all free of noise. In Figs. 2a to 2d and 3a to 3d, we see the
progressive, deleterious effect of noise on Trace(D) and RA
as diffusion weighting is reduced. It is a well-known result
that for a process with a high SNR, exhibiting a simple
exponential decay, an optimal sampling strategy is to make
two observations, one at the initial value and a second at a
time equal to the exponential time constant. An analogous
situation exists in estimating the apparent diffusion con-
stant and the diffusion tensor (although the situation is

further complicated in the MR experiment by T, and T,
relaxation (34)). Crudely, an optimal estimate of the mean
diffusivity (D) is obtained when

1 ~ Trace(b¥D) [10]

Because, for brain parenchyma, (D} ~ 700 — 800 X 107*
mm?/s (6, 7), the optimal Trace(b) ~ 1400 s/mm?. It is not
surprising, therefore, that our results are best with
Trace(b) = 2 b = 915 s/mm? and degrade progressively as
diffusion weighting decreases. Fourth, this method as-
sumes that the DWIs are free of systematic artifacts, in
particular: (1) ghosting caused by motion; (2) signal at-
tenuation due to additional background gradients, or
magnetic susceptibility variations; (3) image distortion
due to induced eddy-currents; (4) improperly calibrated
gradients; and (5) magnetic field inhomogeneity. In this
study, care was taken to mitigate all of these systematic
artifacts although they were not all entirely eliminated.
Of those mentioned above, motion artifacts are usually
the most serious in a clinical environment. They were
reduced here by sedating the animal and by using navi-
gator-echo—corrected DWI sequences. As diffusion
weighting decreases from Trace(b) = 915.3 to 228.82
s/mm?, systematic artifacts are progressively more appar-
ent near the skull. In Fig. Za, a dark band appears on the
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FIG. 4. The lattice anisotropy index map in healthy -cat brain. The first four images are calculated from seven DWIs, with the gradient
pattern given in Eq. [2]. Images (a) to (d) are acquired with different levels of diffusion weighting, i.e., Trace(h) = (a) 228.82 s/mmZ; (b)
461.402 s/mm?; (c) 692.79 s/mm?; and (d) 915.3 s/mm?. Juxtaposed are the images of (e) the lattice anisotropy index and {f) A = 0),
which were both estimated statistically from the entire data set of 25 DWIs, using Eq. [1]. Comparing Figs. 3 and 4, we see that at each
level of diffusion weighting, the lattice anisotropy index significantly reduces the noise level and more clearly depicts the fiber tracts.
However, in the images in which systernatic artifacts are evident, i.e., in (a) and (b), the lattice anisotropy index does not suppress them.

left cortex, and a bright band appears on the right cortex,
which are successively less conspicuous as diffusion at-
tenuation increases in Figs. 2b to 2d. In the clinig, sys-
tematic artifacts are expected to be more pronounced,
and it is likely that one or more of the seven DWIs may be
corrupted by motion. One -should note that assumptions
2, 3, and 4 above apply to all isotropically weighted
imaging sequences proposed to date (14-16}, to the tet-
rahedral method (18, 31), as well as to the new anisotro-
pically weighted imaging schemes proposed recently
(20}, so a comparably level of care should be taken in
using these methods as well.

There are also drawbacks to using these simplified
imaging schemes. For instance, when we acquire more
than seven DWIs to determine the diffusion tensor, we
also obtain estimates of the means and variances of D and
Afb = 0), as well as of the quantities derived from them
(21). However, diffusion tensor MRI using only seven
DWIs is a deterministic, not a statistical procedure, so no
such estimates can be obtained. This limitation pre-
cludes us from assigning confidence levels for the imag-
ing parameters we calculate, and from determining a
meaningful measure of goodness of fit of the model to the
data, because for seven equations and seven unknowns,

the fit is always perfect. Generally, the absence of addi-
tional degrees of freedom makes our results more suscep-
tible to systematic artifacts and noise, because with ad-
ditional images, one can ameliorate these effects, for
example, by weighting images depending upon their
quality or noise level.

The deficiencies of diffusion tensor MRI using seven
DWIs should be more pronounced in measures of diffu-
sion anisotropy than in Trace(l}). First, to calculate
Trace(D), we add all six log-ratio images, so errors will
tend to cancel. Measures of anisotropy, such as RA, de-
pend on squares of diagonal and off-diagonal elements of
D (5) whose errors due to noise are rectified. Thus, an-
isotropy indices such as the RA are intrinsically more
susceptible to noise contamination than is Trace(D), as
reflected in their larger bias and error variance at the
same levels of the signal-to-noise ratio (6). Given that the
signal-to-noise ratio in many clinical imagers is usually
low, and peak diffusion gradients are often <1 G/em, in
this case, Figs. 3a and 3b are more representative of the
quality of the RA anisotropy indices one would expect to
obtain using the seven DWI method than is Fig. 3d. Monte
Carlo simulations of DT-MRI experiments also suggest that
the hias and error variance of these measures would be
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unacceptably high for clinical applications using presently
available clinical hardware (6). Calculating a lattice anisot-
ropy index (6) from the set of seven DWIs ameliorates the
problem of susceptibility to thermal noise but generally
does not correct for systematic artifacts,

The a priori assumption that diffusion is cylindrically
symmetric in tissues (18, 35, 36) (i.e., that two principal
diffusivities are equal in a voxel), is explicitly not made
here. Recent experimental findings in normal human
brain (7) show that this assumption is not satisfied in the
majority of white matter regions (in particular, in the
fibers in the centrum semiovale). Similar findings have
been published for cardiac muscle (12). Instead of invok-
ing diffusion symmetry a priori, it is preferable to first
measure the entire diffusion tensor and then test for
symmetry a posteriori (37). Diffusion tensor MRI using
seven DWIs does not preclude using this approach.

SUMMARY

In performing diffusion tensor MRI with seven DWIs, one
uses the fewest DWIs consistent with the assumption that
water diffusion in the tissue is fully anisotropic, In this
case, simple analytical expressions can be derived for D
as well as for quantities derived from it. Using only seven
DWIs also reduces the total scan time, as well as the
complexity and time of postprocessing the DWIs. How-
ever, this method, like other simplified diffusion tensor
MRI schemes, does not provide éstimates of moments
(e.g., mean and variance) of the diffusion tensor or of other
parameters derived from it. Moreover, these simplified
methods are generally more susceptible to background
noise contamination and to systematic artifacts. Conse-
quently, care must be exercised when using any of these
simplified imaging schemes in radiological applications.
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